Principal Ideal Domain

1 revision
#11 week ago
+6
Auto-generated stub article
+A [Principal Ideal Domain](/wiki/principal_ideal_domain) (PID) is an [integral domain](/wiki/integral_domain) where every [ideal](/wiki/ideal) is a principal ideal, meaning it is generated by a single element. This fundamental property ensures that elements within a PID possess unique factorization, making every PID also a [Unique Factorization Domain](/wiki/unique_factorization_domain).
+## See also
+- [Ring](/wiki/ring)
+- [Euclidean Domain](/wiki/euclidean_domain)
+- [Principal Ideal](/wiki/principal_ideal)
... 1 more lines